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Abstract

Honeybees play a crucial role in our ecosystem, as their pollination efforts directly affect the
global food web and biodiversity of flowering plants. Consequently, in light of the worldwide
decline of pollinators, understanding the dynamics of honeybee colonies and monitoring their
health attracted high research interest. One possible approach to health assessments is to estimate
the number of brood and food storage cells in the honeybee comb. However, the cells are difficult
to observe directly due to occlusions caused by the worker bees. This requires either manual
removal of the comb and brushing off the bees, or continuous monitoring of the entire comb. In
this work, we present a method for automated monitoring of brood cells over long time periods by
a robot operating in observation hive. Our approach uses focused honeybee queen observations
to detect egg-laying events and opportunistic and irregular image scans to detect and classify
individual cells in the comb. By combining these modules with a temporal model of brood
development, we create a spatially and temporally consistent semantic map of the comb. The
resulting map allows us to continuously estimate the total numbers of different brood cell types in
the comb, as well as the brood cannibalism rate. Although the robotic platform used in this study
is not applicable to standard hives, our work contributes valuable data for modeling honeybee
colonies and understanding the structural dynamics of the comb.

Keywords: Apis mellifera, biohybrid systems, computer vision, mapping, deep learning,
long-term autonomy

1. Introduction

Western honeybees (Apis mellifera) play an important role in our ecosystem, as their pollina-
tion efforts directly influence biodiversity and food security Paudel et al.| (2015); |Shaheen et al.
(2017); |Allsopp et al.| (2008)). In light of the worldwide decline of pollinators Potts et al.|(2010);
Kevan and Viana (2003), researchers have in recent years been investigating ways to support
honeybee colonies with technology. Specifically, advances in robotics and artificial intelligence
opened up new opportunities in honeybee research for animal-robot interaction in natural ecosys-
tems |Barmak et al.| (2023)); Romano et al.| (2024).

To continuously assess the health of the colony, one would like to monitor the entire honeybee
comb, which encodes information about the strength of the colony and also about the outside
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environment. The comb reveals the critical health indicators of the colony, such as the state of
food stores (nectar, honey, and pollen), the growth of the colony (through the development from
eggs to adult bees), and potential issues such as diseases or cannibalism of the brood |Groeneveld
et al.| (2024). Historically, comb inspections were performed manually, experienced observers
estimating the number of honeybees in the comb, as well as the quantity of cells for food storage
and brood. However, such frequent manual inspections are time-consuming and require trained
observers, which makes them unscalable and subject to potential bias. Moreover, manual inspec-
tions can also disrupt colony interactions and carry the risk of harming or killing the queen or
workers.

To alleviate these issues, some researchers have attempted to automate parts of the inspec-
tion process to reduce workload and improve accuracy (see Section [2). However, most existing
methods are still invasive, necessitating the removal of honeybee combs from the hive and the
removal of bees (usually with a brush), which disrupts the colony. Unfortunately, this is still
hardly scalable for continuous monitoring of a large number of colonies. Moreover, our goal
is to observe the colony in its natural environment while minimising disturbances; traditional
methods are, therefore, unsuitable.

In addition to its relevance in biological and agricultural research, our work is also instrumental
in our two Horizon projects “RoboRoyale” and “SensorBees”. The first aims to support the
efficiency and growth of honeybee colonies through interactions with a honeybee queen, who is
practically responsible for the colony’s growth. The second seeks to use honeybee colonies as a
sensor networks for environmental surveillance through observation of the comb contents.

In the RoboRoyale project, we designed a robotic system capable to observe and interact with
a living honeybee colony with a specific focus on the honeybee queen, as outlined in|Ulrich et al.
(2024). When the queen is inactive, such as during sleep, the robotic system can opportunistically
scan the comb, producing a grid of partially overlapping images captured at different locations to
provide comprehensive coverage of the entire comb to capture the brood state. Detailed knowl-
edge of the brood is essential to assess the impact of robotic interventions and interactions on the
whole colony.

In this paper, we present a software pipeline that uses comb scans, irregular in time, to track
honeybee brood development at the individual cell level. Our approach leverages robotic map-
ping techniques to create a semantic map of the comb, where each cell is modelled indepen-
dently. We integrate multiple detectors for egg-laying activity, open brood, and capped brood
with a temporal model that captures the stages of honeybee development. Although automated
data collection often results in images where cell contents are not clearly visible, we demonstrate
that neural networks can learn patterns beyond human annotators’ capabilities.

Tracking individual cells over time enables estimating the number of egg, larva, and capped
brood cells, as well as the state of unobserved cells and the age and sex of larvae and capped
brood. Our approach provides unprecedented real-time comb monitoring in observation hive
without disrupting the colony and without the need for manual intervention. Since our model cap-
tures standard colony development, it can also be used to detect anomalies, investigate broodnest
formation, and quantify brood cannibalism, providing potentially valuable insights into colony
health. While this system is still operating only on observation hives and therefore is limited
in scalability, it provides a useful proof-of-concept solution for studying honeybees in partially
controlled conditions and methods of long-term monitoring.
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1.1. Contributions of the Work

The main technical contribution of this work is a mapping pipeline able to deal with a cluttered
and repetitive environment, which exhibits only sparse features with limited correspondences.
An important part of the pipeline is a temporal filter integrating a model of brood development
and three different visual sensors. The filter enables us to monitor the state of the colony even
with infrequent and irregular comb observations and a high level of occlusions caused by honey-
bees. A minor contribution lies in showing that, using an intelligent annotation scheme, we were
able to leverage temporal context in order to learn a model to classify images not annotatable by
humans. A major biological contribution is the creation of the first complete map of individual
comb brood cell states’ evolution over an extended time period. We believe this to be the first
effort to model the honeybee cell development using a temporal Bayes filter and incorporate the
queen behaviour into the cell state estimation. The presented approach shows that the underlying
theoretical foundation of robotic mapping methods, e.g., Bayesian filtering, is appropriate and
applicable to comb state estimation.

2. Related Works

Researchers have studied honeybee colonies and methods to estimate their strength for
decades. Traditionally, colony health was assessed manually, relying on direct counts of eggs,
brood, or adult worker bees. Jeftree| (1951) presented an estimation method that compared the
comb images in each hive with the reference images, allowing for efficient population assess-
ments in hives. In Jeffree (1958), a method for estimating brood areas using a grid placed over
the brood frames was introduced. These works laid the foundations for the widely used Liebefeld
method, which relies on visual estimation of the number of adult workers covering each side of
a comb, as well as the surface area occupied by open brood, capped brood, honey and pollen
stores Dainat et al.|(2020). This method standardized bee population and cell type quantification
estimates across different colonies.

With advancements in technology, researchers have increasingly turned to computer-assisted
methods to ease colony assessments and improve their accuracy and efficiency. The majority of
existing non-invasive monitoring solutions rely on indirect measurements such as weight, tem-
perature, humidity, sound, or bee traffic|Meikle and Holst (2014)); Hadjur et al.[(2022). Although
these measurements can reflect overall state of the colony, they provide no direct information
about the condition of the comb itself. To address this, visual-based approaches have been devel-
oped to analyze comb images directly. Most studies have focused on estimating the brood area
or counting the number of cells within the honeybee comb. The early methods, such as [Emsen
(2006) and|Yoshiyama et al.|(2011)), still required a human operator to segment images manually
and did not offer any automatic analysis.

Knauer et al.| (2005) was among the first to propose an automated approach for detecting open
cells in comb images partially occluded by bees, using an adaptive background model, edge
detection and contour classification. [Liew et al.| (2010) introduced a method to detect and count
individual cells in comb images without bees, employing the Circle Hough Transform (CHT),
a widely used technique for circular feature detection [[llingworth and Kittler| (1987). |[Hoferlin
et al.[(2013)) further advanced this technique by integrating machine learning algorithms for cell
classification based on their content and offering their solution through the commercial software
“HiveAnalyzer”.

Other researchers explored alternative methods for cell detection in images without any bees.
For instance, [Sparavigna) (2016)) used thresholding and superpixel partitioning to evaluate cell
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size distributions, while Rodrigues et al.|(2016) applied a convolution-based approach to cell de-
tection with subsequent classification of capped brood cells. Despite these efforts, CHT remained
the most prevalent approach for cell detection. Tools such as “CombCount” |Colin et al.| (2018)
utilised CHT to automatically detect open cells and accelerate manual annotation of areas with
capped cells (brood and honey areas). Similarly, studies such as|Paolillo et al.|(2022) and |Rathore
et al.| (2023) employed CHT to count uncapped cells on combs as well. In|Alves et al.| (2020),
the authors used CHT for cell detection and combined it with a U-Net neural network to bet-
ter identify the area of the comb and filter out false positive detections. They also compared
various neural networks for cell classification based on cell contents, presenting their results as
the “DeepBee” software. |[Rodriguez-Lozano et al.| (2024)) addressed the problem of detecting
capped honey cells, which usually may not have clear circular borders. Then high-resolution
comb images were split into tiles analysed by a neural network to segment areas with capped
honey. Nevertheless, all of the mentioned visual-based semi-automatic methods are invasive and
require the removal of the bees from the comb, thus causing disruption to the colony.

In some works, the authors use a fixed-camera setup to observe the honeybee comb with the
colony over longer periods. In Bozek et al.| (2021), the authors trained a U-Net neural network
to detect capped brood cells in a background-filtered image and combined it with bee tracking to
estimate the demographic population of the colony. Another work, [Defer (2022), took a different
approach and used a convolutional neural network to localize centres of open cells not occluded
by bees and attempted to estimate larvae age from the images using deep learning.

Recently, a few alternative methods have been proposed to observe the comb in novel ways.
Borlinghaus et al.|(2024)); [Stefanec et al.[(2025) employed a modified flatbed scanner, enabling
detailed tracking of individual cell brood development from egg to adult bee. Notably, this setup
allows observation inside sealed cells and has made it possible to directly capture the repro-
ductive cycle of the Varroa mite within them. In contrast, [Milovanovi¢ et al.| (2025) introduced
“Beeholder”, a system that embeds sensors into standard hive frames to analyze comb contents
via absorption spectroscopy. Their results demonstrate the ability to detect various patterns of
honey filling. While it does not offer cell-level resolution yet, its design allows continuous comb
monitoring without disturbing the colony.

The most comprehensive commercial attempt to automate beekeeping seems to be the “Bee-
wise” system |[Beewise Technologies Ltd.| (2025). According to the propagation materials, it
employs a custom robotic system, which is capable of automatically carrying out tasks such
as analyzing the comb contents using visual-based methods, applying treatments, or harvesting
honey. This enables routine, full-frame inspections of all combs in the hive without human in-
tervention, but at the cost of colony disturbance due to repeated frame manipulations. However,
it is important to note that as it is a commercial product, very little information is available as to
its capabilities and inner design.

We build on our previous work Janota et al.[(2024), in which we already work with data from
a robot with a moving camera setup by |Ulrich et al.|(2024). There, we demonstrated the applica-
tion of standard object detection neural networks for cell detection in images occluded by bees.
We have also shown the limitations of standard image registration methods when used in the dy-
namic, repetitive, and cluttered environment of a honeybee hive. Additionally, we demonstrated
that with sufficiently precise positional information of the robot, we can gather observations of
individual cells over time. Unlike in the works of our predecessors, our observations are local.
This necessitates to employ data sampling strategies capable to deal with occlusions caused by
worker bees Blaha et al.| (2024). In this work, we propose a robust method for creating a spatial
semantic map of the comb, enabling detailed long-term tracking of the state of individual brood
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cells in the comb.

We provide a concise comparison of our work with several previously mentioned open source
or commercial solutions in Tab. [l We compare the approaches based on the level of autonomy
(i.e., whether human involvement is required for operation), invasiveness (i.e., whether it needs
to physically manipulate with the comb frames), cell-level resolution (i.e., whether it provides
aggregated data or detailed information about individual cells), monitoring method, whether
it targets standard beekeeping practices and is applicable to field-size hives and colonies, and
product availability.

Feature | Beewise* | Beeholder | DeepBee | Ours
Fully Autonomous v 4 X v
Non-invasive X 4 X v
Cell-level Resolution v X v v
Monitoring Method Visual Absorp. spectroscopy Visual Visual
Targets Standard Beekeeping v v v X
Product Availability v v v X

Table 1: Comparison of our mapping system, which uses a vertical gantry robotic system for data acquisition, with several
commercially available solutions for comb monitoring. *Note that the information in this table may be incomplete or
misleading, as there is very little information available for the commercial system “Beewise”.

3. System Setup and Data Acquisition

Our experimental setup consists of an observation hive containing two vertically stacked
combs of standardised size 420 mm X 220 mm, covered by glass panels.

The observation hive is constructed from aluminium extrusion parts to ensure high-precision,
comparable and reproducible observations. The hive features two glass panes on each side,
which permit 100% visibility of the comb surfaces in principle. The internal design of the hive
provides a volume of around 9 litres, with a narrow depth of around 4 cm between the glass
panes for each comb viewing area. It also includes air slits for ventilation and a port for a
feeder. The total internal volume, coupled with the use of only two combs, means that the hive
was significantly smaller than typical field production hives, thereby accommodating a smaller
colony size than is generally found in such hives. Observational hive systems, including the type
utilised in this study, generally have a spatial volume that is insufficient for honeybee colonies
to achieve their full biological size. In biological terms, the limited comb area in such hives
is rarely sufficient for a colony to reach its maximum population size. We estimate that these
confined conditions typically allow colonies to reach a maximum size of around 15% of what
they might attain in larger, production-oriented hives. These significant constraints on overall
colony size inherently influence natural developmental trajectories. While this setup allows for
detailed observation, it represents a specific experimental context. The hive is housed at the
University of Graz in Austria, indoors to facilitate hardware setup and protect the glass-covered
hive from direct sunlight. A plastic tube connects the observation hive, which is indoors, to
the outdoor environment allowing for free movement of the bees. To minimize disturbance to
the colony, observations are conducted under near-infrared LED lighting with wavelengths from
750 nm to 850 nm, which is invisible to honeybees. The hive is located on the third floor of
a university building and kept in an indoor room under constant darkness (DD conditions) for
the bees. The hive is kept in a climate-controlled indoor room with typical ambient temperatures
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Figure 1: The autonomous observation system collecting behavioral information of the queen honeybee. Panel (a) shows
a photo of the system in its real workspace with the observation hive, and panel (b) shows the mechatronic system and
its main components for data collection.

ranging from 26 °C to 30 °C. This indoor setting results in relatively stable temperatures with less
daily fluctuation compared to typical field conditions, as there was no direct sunlight exposure
on the hive. While relative humidity is not actively controlled, it is comparatively low due to
the air conditioning system in use. Despite the indoor housing of the hive itself, the bees have
continuous access to the outside via a flight tube, allowing them to forage freely. The external
foraging environment is distinctly urban, situated within the city. It offers diverse floral resources
from several key areas in the vicinity, including a nearby botanical garden, the central city park,
and numerous tree-lined avenues and urban green spaces providing a variety of flowering plants.
When natural forage was insufficient, a 72.7% (w/w) sucrose solution was provided ad libitum
to ensure adequate nutrition.

To achieve long-term autonomous colony monitoring, we use a vertical robotic gantry system,
AROBA (see Fig. [I), introduced in [Ulrich et al| (2024). The robot has two independent ball
screw drive systems for movement in both horizontal and vertical directions, supported by two
linear guides for stability. A stepper servo motor, with a resolution of about 4 um and maximum
speed of 10 mm s~!, drives a single ball screw for horizontal motion. For vertical motion, two
synchronized ball screw drives, powered by a stepper servo motor, work together to improve
movement stability and precision. For a full coverage of the observation hive, we use two such
mechanisms working in parallel, each at one side of the comb, see Fig. [T} Further details about
the robotic system can be found in [Ulrich et al.| (2024).

3.1. Vision System

The robotic system is equipped with a high-resolution Active Silicon Harrier 10x AF-Zoom
camera mounted on its end-effector that can be positioned parallel to the comb to observe any
location in the hive. The camera uses the Sony Starvis sensor for high performance in low-
light conditions. The camera captures images at a resolution of 1920 px x 1080 px at a rate
of 30Hz and features controllable zoom and focus. We collect images at two zoom levels—
queen tracking and searching are performed at a resolution of approximately 67 um px~!, while
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scan, 4’&7 Iiff'
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Figure 2: A visualization of the scanning process, where the robot sequentially moves through the comb, capturing
images at prespecified locations. Panel a) shows a single image observation of the comb (with its location highlighted
in orange color). Panel b) shows a diagram of the scanning data with image alignment needed in both in space (green—
green, purple—purple) and time (green—purple). Panel c) shows an image of the entire comb stitched from observations
at individual locations (red dots), created by merging three partial scans taken at different times (highlighted in different
colors).

comb observations are conducted at a resolution of approximately 37 um px~'. For tracking the
honeybee queen, we use a marker-based vision system, presented in [Ulrich et al.| (2023).

3.2. Scanning the Honeycomb

The robotic mechanisms on both sides of the hive operate in parallel, with one robot actively
tracking the queen while the other mirrors its movement. This ensures continuous observation
even when the queen moves to the opposite side of the hive. When the queen is resting, the
secondary robot, which normally mirrors the tracking one, switches to scanning the comb. The
scan begins at the lower-left corner and progresses sequentially, with the robot stopping at pre-
specified locations in the comb and capturing images. If the queen starts moving, the scan is
preempted and later resumes from the last recorded scan position.

This process generates partial scans of the comb, consisting of a series of overlapping images.
By sequentially combining these partial scans—starting from the initial scan at the lower-left
corner to the scan ending at the upper-left corner of the comb—we can construct a complete scan
of the comb (see Fig.[2). The complete scan forms a grid of a total of 462 overlapping image
tiles, each captured at a different location in the hive.

3.3. Odometry Calculation

To create a map of the comb, it’s crucial to know the location of the robot’s end-effector within
the hive. The robotic system generates position information from the motors, though this data
7



can be inconsistent over time. In|Ulrich et al.|(2024)), the evaluation of the system showed less
than 8 mm drift after traversing a 1 km distance.

To mitigate this, the AROBA system applies a transformation of the motor positions into the
hive’s coordinate system. This transformation relies on markers placed at each corner of the hive,
as shown in Fig.[2] During the calibration process, the robotic manipulator moves to the centre of
each marker, recording the motor positions at each location. A homography matrix is computed
to project the motor positions onto the hive’s coordinate frame. The robotic manipulator is then
navigated in the coordinate frame of the hive. Before every start of the scanning, the robot moves
to the first marker and compensates the accumulated drift so that the position of the first marker
is always in the origin of the hive’s coordinate frame.

3.4. Produced Data

We use a dataset collected from 15 August 2024 to 9 September 2024, consisting of honeybee
queen tracks and scans of the comb. In total, we tracked the honeybee queen for 58.1% of time,
with the total traveled distance being 849.8 m. On the side of the hive labelled 0, the robotic
system collected 73 full comb scans and 103 full comb scans on side 1.

4. Methods

In this paper, we propose a method for mapping a honeybee comb using data produced by the
robotic system described in Section |3 The goal is to create a spatially and temporally consistent
semantic map of the comb, with individual cells being the atomic map element.

4.1. Problem Statement

The mapping process operates with two kinds of inputs—comb scans and queen tracking data.
We define the operational space of the robot as A C R?, representing the full range of motion
available to the robotic system. This operational space includes and exceeds the comb area—the
area physically occupied by two vertically stacked combs, each measuring 420 mm X 220 mm-—
thus enabling the robot to observe any location within the hive (see Fig. 2t). The sequence of
all collected full comb scans is denoted as (S )7_,, where n is the total number of scans. Each
full scan S, consists of a sequence of 462 comb observations ((p;, i ts o L, j))jizl, where p;; € A
is the camera position in the hive’s coordinate frame, f,; € R* represents the timestamp the
observation was captured and I ; is the image tile. In our particular setup, the total number of
tiles is always 462, see Sectionfor details.

The queen tracking data consists of an image stream from the system when it is tracking the
queen. Individual time-continuous data are denoted by a sequence (Q,)/_,. Each queen track Q,

consists of a sequence of observations ((pq, it 1g, j))jL.il , where L, € Nis the length of the track,
p,;j € A is the position of the camera in the hive coordinate system, #,; € R* is the timestamp
of the honeybee queen observation, and I, ; is the corresponding image of the honeybee queen.

The goal is to generate a sequence of semantic maps (M;)|_,,, where each map M inte-
grates information from the scans and honeybee queen tracks collected up to that point. The
semantic map is represented as a set of individual cells M = {c,,,...,csn,}, Where each cell
cs,j is characterized by its metric position p;; € A, its estimated radius r,; € R*, number of
observations of the cell o, ; € N, its state s ; € [0, 11 representing belief over possible cell con-
tents, and the last timestamp ¢, ; € R when the cell was observed. We define 4 content classes
k € {egg, larva, capped brood, other}, with a total of 43 internal states, see Section
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Figure 3: Overview of the mapping pipeline. First, data from the honeybee comb scans are used to build the map of the
spatial layout by detecting open cells and registering the observations. Semantic information is extracted from the scan
images and from honeybee queen tracking. Cell detections are classified into open-brood and non-brood classes, for cells
where capping is expected also capping detector is in place. Simultaneously, honeybee queen tracks are analyzed to detect
egg-laying events. All the indirect observations are passed to a Bayesian filter, which encodes the temporal development
of brood stages, producing the final spatially and temporally consistent semantic map including age estimates.

It is important to note that with new scans, cells may not only be added but also removed from
the map, which is why |M;| can be less or more than |M,,|. To track the evolution of individual
cells across scans, we need to ensure that s ; integrates only observations corresponding to the
same cell. For this purpose, we could either characterize each map cell with an additional unique
identifier or define a mapping between two maps M, and M,,;. We define the mapping as a
matrix A ;11 € {0, 1}VN1 where A, 41(i, j) = L[cy; corresponds to cgy1 ;1.

4.2. Approach

An overview of the proposed system is shown in Fig.[3] As mentioned, the mapping process
takes as input tracks of the honeybee queen, sequential scans of the honeybee comb, and, once
available, a previously constructed map. The whole mapping process can be thought of as two
alternating steps: (1) mapping of the spatial layout (Section[d.3)) and (2) extending the map with
semantic information (Section {.4).

At the beginning of the spatial mapping process, when the previous map is not available, we
use the first n comb scans (S,)"_, to create an initial spatial map M, (see Section @), which
is then further updated as new data becomes available (Section [4.3.4). The map update process
begins with the detection of open cells in the collected image tiles (I, j)‘}gzl in the full honeybee
comb scan S (Section #.3.1). The detected cells are then processed by a spatial registration
module (Section[d.3.2)), which establishes correspondences between the cells already in the map
and the detected ones and updates the spatial map accordingly.

After having integrated cell detections into a spatially coherent structure (both initial map cre-
ation and consequent map updates), we also integrate the semantic information based on the cell
content. Unfortunately, the lighting conditions and amount of debris in the hive prevent us from
directly and easily observing the contents, so we work with three different kinds of observations,
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which sometimes partially overlap with the set of cell states, however, in general, we consider
these hidden. First, we classify the images of detected cells using the open brood classification
module to later discern cells with eggs and larvae (Section[4.4.2)). Cells that are already present in
the map but remain undetected in the latest scan are processed by the capped brood classification
module, which looks at their assumed positions and confirms the larva capping (Section 4.4.3).
To further improve the cell state estimation, the system utilizes queen tracking data to detect
egg-laying events, indicating which cells may contain a newly laid egg (Section [4.4.4). Finally,
the outputs from the classification modules and egg-laying detection associated with cell ¢, ; are
integrated into the state estimate s, ; using a temporal Bayes filter, which continuously estimates
and updates the state of each cell in the map (Section[4.4.T)). For simplification, in our approach,
we adopt the assumption of independence between the states of cells, as is common in similar
mapping methods.

4.3. Spatial Mapping

In this section, we explain how the underlying spatial map is created and updated. As men-
tioned, the spatial map is represented as a set of individual cells My = {cs1,...,csn,}, €ach
characterized by their estimated metric position p,; € R?, radius r,; € R* and number of de-
tections of the cell o, ; € R*. The mapping starts with generating an initial map M, , using the
first njy scans (S)"™ of the honeybee comb, where we chose ny,; = 20 (Section and the

s=1
subsequent scans are used to continuously update the map (Section .3.4).

4.3.1. Honeybee Cell Detection

The first step in constructing the map is detecting individual open cells in honeybee comb scan
images, as they serve as the foundation for subsequent spatial registration. The detection of open
cells in honeybee comb images has been widely studied, as discussed in Section[2] with the Circle
Hough Transform (CHT) being the most commonly used approach. However, in our previous
work Janota et al.[(2024)), we demonstrated that CHT struggles when used on images from live
colonies, leading to a high number of false positive detections. To overcome these limitations,
we proposed using standard object detection neural networks, specifically Faster R-CNN Ren
et al. (2016) and YOLOVS5 [Jocher et al.| (2022).

The cell detection process is performed on individual image tiles of size 1920 px x 1080 px
extracted from honeybee comb scans. With the aim to enhance the neural networks’ ability to
detect open cells that are not occluded by bees, we introduce two distinct classes: fully visible
open cells and partially occluded open cells. For a comprehensive evaluation, we reassess these
methods on our new annotated dataset, as detailed in Section [5.I] The training process of the
object detection methods, along with the specific CHT parameters, is described in our previous
work Janota et al.| (2024).

The input to the honeybee cell detection is a single image tile, I ;, with its corresponding
metric position, py; € R2. The detector outputs bounding boxes with class labels. For spatial
mapping, we use only fully visible detections, estimating each cell’s metric position using the
center of its bounding box and computing its radius as the average of the bounding box’s vertical
and horizontal sizes.

4.3.2. Cell Detection-based Registration
To be able to create the initial map and perform map updates, correspondences between the
open cell detections in the comb images and also between the open cell detections and the exist-

ing map need to be established. There are two main approaches when registering two images:
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direct approach and feature-based approach. In our previous work Janota et al.| (2024), we eval-
uated both approaches and showed their limitations. The comb images exhibit variations in
illumination and exposure, and the overlapping parts of the images usually differ significantly in
content due to the movement of the honeybees, making the image registration challenging for
the direct approach based on cross-correlation. Conversely, there is a lack of unique features for
standard feature-based approaches due to the repetitive nature of the honeybee comb.

To address these challenges, we employ a feature-based registration using the detected open
cells as unique features. If the robot’s odometry is sufficiently precise—i.e., with a position
error smaller than half the cell size—the registration based on detected cells, which minimizes
the translation between the positions of corresponding cells, is sufficient. As demonstrated in
Section this condition holds in our case. Additionally, this registration method can also be
used to register new comb scans to an existing map.

In both position-based registration of image pairs and image-to-map registration, the problem
simplifies to aligning two point sets D = {d,,...,d,,} ¢ Aand D, = {dy,...,d,} C A, where
each point represents the position of a detected cell or a cell in the existing map. Since the robot
moves in a plane parallel to the honeybee comb, the transformation between the point sets is
restricted to translation along the horizontal and vertical axes. To estimate this transformation,
we employ a sampling-based algorithm that searches for a minimal translation between the point
sets, to identify corresponding cells C* = {(d,d’) | d € D,,d’ € D;} and determine the trans-
lation vector V* € R2. We define the distance threshold G, set to the typical cell size about
4.4mm (varies with camera placement), which serves as an initial search radius. g then pro-
vides a stricter criterion for final correspondences. The pseudocode for the cell detection-based
registration is presented as Algorithm [T}

4.3.3. Creating Initial Map

When the odometry of the robot is imprecise or cell detections are sparse, the incremental
approach to map construction may fail. To address this, we designed a more robust technique for
generating the initial map. This process consists of two phases: (1) constructing per-tile maps by
aligning images captured from the same locations in the hive and (2) merging these per-tile maps
into a complete initial map. As already mentioned, we use the first n;,; comb scans (SS)’;;"} to
create the initial map M, , in order to increase robustness of the mapping process. We selected
ninic = 20 as empirically reasonable, but we observed the method not being too sensitive to the
exact choice of njy; on our data. The sensitivity of the method to nyy,; is related to the precision
of the robot’s odometry, with less precise odometry needing a better initial map (see Sec. [5.2|for
information on the precision of our robot).

Creating Per-tile Maps. The process begins by grouping images (Is,k)?g | taken from the same

location k € {1,...,462} in the hive and applying cell detection-based registration to establish

correspondences C; ; = {(d,d’) |[d € D;,d’ € D;,i € {1,...,20},j € {1,...,20},i # j} between

the cell centers O; and D; detected in images I;x and I, (see Fig. E[) These correspondences

serve as the basis for estimating pairwise translations T; ; between the images. Next, we anchor

the first image tile I, ; to its metric position p;x € R? and refine the positions psx € R? of

all other images (Is,k)igz in the sequence using a least-squares optimization constrained by the
11



Algorithm 1: Cell detection-based registration to find correspondences between the cells

1 Input: Two sets of cells positions: D, D,
2 Output: Optimal correspondences C*
38« {d|deD,,Ad" € Dy, |d-d'|| < G};
4 Shuflle(S);

5 C* <0,

6 V' « o0;

7 foreach d € S until max iterations do

8 foreach d’ € D, where ||d’ —d| < G do
9 T—d-d;

10 D) — D+ T,

11 C<—{(d,d’)|deZ)’,EId’eZ)l,Ild’—d||<g};
12 if |C| > O then

13 T« & Zaarecd—d');

14 V «|ITl|;

15 if V < V* then

16 C* « C;

17 V'« V;

18 end

19 end

20 end

21 end

pairwise translations T; ; between them to satisfy

min > (0 - P ) - Ti) (1)

Vi:p’;
ik e 20)

£]
’
S.t. p 1,k = p[’k.

Once the images are aligned, we cluster detections from different images whose refined posi-
tions lie within % of each other, with G set to the typical cell size about 4.4 mm, to associate them
as detections of the same physical cell. False positive detections or false registration of the cells
may result in multiple overlapping cells in the per-tile map. This is inconsistent with the physical
constraints of the comb structure. To ensure spatial consistency, we apply Non-Maximum Sup-
pression (NMS) with an Intersection over Union (IoU) threshold of 0.3. Of the overlapping cells,
we retain those with a higher number of detections. The complete pseudocode for the creation

of per-tile maps is presented in Algorithm 2}

Combining Per-tile Maps. After constructing the per-tile maps P, where k € {1,...,462}, we
merge them into a comprehensive initial map of the entire comb, as illustrated in Fig.[5] We
again employ cell detection-based registration (Alg. |I)) to establish correspondences between
neighboring per-tile maps, producing a set of unique cells in the honeybee comb. In the same
fashion as with the per-tile-maps we recalculate the metric positions and radii of the cells and
apply NMS, ensuring spatial consistency. The pseudocode outlining the per-tile-maps merging
process is presented in Algorithm
12



a) Pairwise Correspondences b) Initial Map for the Tile

Figure 4: Visualisation of the initial map creation for a single tile (hive location) using images from four different
honeybee comb scans (captured at different time). First correspondences are established between pairs of images from
individual scans (panel a), as described in Sectionm Then the initial map is calculated. Panel b) shows the initial
map of the single tile overlayed over one of the original images.
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a) Initial Maps for Individual Tiles b) Final Initial Map

Figure 5: Visualisation of the process of combining per-tile initial maps into the complete initial map of the comb. For
simplicity, we show only four image tiles. Panel a) shows the initial maps of individual tiles, panel b) the finalised initial
map (black) alongside all cell detections used for the estimation of the cell positions in the map (red).
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Algorithm 2: Per-tile map creation for a tile location k from the first n comb scans

1 Input: Images (L)) taken from location k
2 Output: Per-tile map Py = {ck1,...,Ckn,)
3D« 0
// Detect cells in images
4 foreach scan s = 1 to n;,;; do
5 D,y « detect open cells in I 4;
6 D« DUDgy;
7 end
8 T « 0
// Estimate pairwise translations
9 foreach i, je{l,...,ny;}, i # jdo
10 C;j « register(Djx, Djr);
11 T < ﬁ Z(d,d’)eC,;j(d -d’);
12 T —TU {Ti,j};
13 end
// Refine image positions
14 {p;} < Least-Squares Optimization(pi , T);
15 C « 0;
// Cluster detections
16 foreach detection d € D with position py and radius rq do

. . G
17 lf HC[ = (pL‘NrC[’O(T[) € C . ||p(/1 - pC[” < E then
18 O¢, < 0, + 1;
1 .
19 Pe; < Pe, t % (pé - pc,),
1 .
20 Fep < Tep + o (ra—re,)s
21 else
2 | C—CuU{(pyra. DL
23 end
24 end

25 P; « Non-Maximum Suppression(C, IoU > 0.3);

4.3.4. Updating Map

Once the initial map My is created, the subsequent comb scans (S)|_,, are used to update
it. For each new image I, with k € {1,...,462} in the scan S, we apply cell detection-based
registration (Alg. [T) to establish correspondences between the detected cells in the image and
those already present in the map (see Fig.[6). Based on new observations, we update existing
map cells, and detections without correspondences are incorporated into the map as new cells. To
ensure spatial consistency, we again apply NMS. Algorithm [] provides the pseudocode for the
map update. When discarding cells from the map, we also need to construct the mapping matrix
As_1 5 (see Section@ between the cells in the map M,_; and M, which allows for retrospective

association of the corresponding cells in the map sequence.
14



Algorithm 3: Combining per-tile maps into a global initial map by matching and clus-
tering detections

1 Input: Set of per-tile maps P = {P1, ..., P}
2 Output: Initial map M,,, = {Cn,, 15 -+ CnypiN,)
3C«0;
// Group matching detections
4 foreach neighboring per-tile maps (P;, P;) do
5 C;j « register(P;, Pj);
6 foreach corresponding pair cells (c}, c;.) €C;jdo
7 d « detections_of(c}) U detections,of(c});
8 if Ac, € Cs.t. dnc, # (0 then
9

‘ co — coUd;
10 else
1 | C—cCud,
12 end
13 end
14 end

// Add unmatched detections
15 foreach per-tile map P; € P do
16 | foreach cell ¢’ € P;and ¢’ ¢ |J.c c do
17 ‘ C « C U {detections_of(c})};
18 end
19 end
20 K «— 0;
// Recompute cells from detections
21 foreach cluster c = {d,,...,d,,} € Cdo
22 Pc = # Z?i] Paq;;
N
24 0. = m;
25 K — KU {{pe, 7e, 0c1};
26 end
27 M,

Minit

< Non-Maximum Suppression(%, IoU > 0.3);

4.4. Semantic Information in the Map

The spatial mapping provides a sequence of observations for individual cells in the comb. As
discussed in Section [2] prior works have classified the cells based on their content by image
classification neural networks. Nevertheless, this approach requires a well-annotated dataset of
cell images for training, which may be challenging to obtain. The robotic system that we use was
optimised for honeybee queen tracking Ulrich et al.| (2024). Therefore, details of cell contents
are often not clearly visible to humans (see Fig.[7), making standard manual annotation protocols

practically infeasible.

Fortunately, the development stages of honeybees are well described in the literature, pro-
viding a strong prior knowledge that can be encoded using a model of temporal evolution. We
chose to model this evolution using a simplified Markov model, which allowed us to formulate

15
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Figure 6: Visualization of registration of new observations into an existing spatial map. The new observation form the
comb scan (right) is successfully matched with the map (left) by the correspondences (red). Observations that were not
matched are cells which were missing in the map, because they were not observed before. By integrating this observation,
position of the cells that were matched will be updated and new cells will be added into the map.

a) Egg b) Larva c) Capped Brood d) Other

Figure 7: We consider four classes of cells based on their content: a) egg, b) larva, c) capped brood and d) other
(storage or empty). Due to lighting, debris and other conditions inside of the hive, the cell content is typically not easily
distinguishable by the human eye. This especially concerns eggs and young larvae. As shown later, a neural network-
based algorithm was, however, able to learn to classify those to a certain extent.

16



Algorithm 4: Updating the comb map with a new scan

1 Imput: Map M,_| = {cs-11,...,Cs—1n,,}, SCAN S g
2 Output: Updated map M

3 Ms — Ms—l;

4 foreach tile k = 1 to 462 do

5 Dy « detect open cells in I y;

6 Cix < register(Dy ., My);
// Update map cells
7 foreach correspondence (c;,d) € Cy; do

8 0; < o0; +1;

9 Pi < Pi + 5 (Pa — P);
10 r,-<—rl~+oll_(rd—ri);
1 end

// Add new map cells

12 foreach detectiond € Dy \ {d | (c;,d) € Cyy} do
13 ‘ My — M U{(pga,ra,0 = D};

14 end

15 end

16 My <« Non-Maximum Suppression(M;, IoU > 0.3);

a Bayesian filter (see Section[d.4.1)). By integrating the chain temporal model with multiple spe-
cialised sensors providing observations on the current hidden state, we can estimate the state of
the cells over time. Our system employs three visual sensors, one for classifying capped brood
cells (Section [4.4.3)—easily recognisable by a human annotator—and another for classifying
open brood cells into either other or joint “open brood” categories (Section [4.4.2). Since the
robot tracks the honeybee queen most of the time, the third sensor detects egg-laying events
(Section[4.4.4), providing crucial information on positions and times of newly laid eggs.

4.4.1. Temporal Model of Honeybee Evolution

The temporal model we used is a discrete chain description of the biological process that
occurs within the brood cells. We use it for a filtering task, i.e., to estimate the posterior dis-
tribution of belief over the true hidden state of the cell H; ~ p(H, | z1,) at time ¢ for each cell
in the map given its past observations z;.;. In our work, we follow the formulation and notation
of the Bayes filter from [Thrun et al.| (2005). The Bayes filter simplifies the filtering process by
assuming Markov property, meaning that the current state encapsulates all relevant information
for predicting future state. This can be expressed mathematically as p(Z; | Hy,z1.) = p(Z, | Hy)
and p(H, | Hi-1,z14-1) = p(H, | H,—1). The Markov assumption allows us to recursively calculate
the posterior distribution p(H; | z;.;) at time t using the corresponding posterior p(H; | zj;-1) at
time ¢ — 1 and the most recent measurement z,. The algorithm comprises two steps—prediction
p(H, | z14-1) and measurement update p(H, | z1.;). The calculation follows

p(H; | z14-1) = Zp(Ht | Hi-y = h1) - p(Hi—y = heoy | 2104-1) ()

Iy

p(H; | z14) & p(z; | Hy) - p(H; | Z1:4-1), 3)
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where p(H, | H;-1) is referred to as the transition model and p(Z; | H;) as the sensor model. In
our work, we actually integrate three different sensors, with each providing different information

for the state estimation, see Sections [£.4.2H4.4.4

States of the Temporal Model. We distinguish four classes of cells—egg, larva, capped brood
and other. Each developmental stage of a young bee has its duration, typically expressed in
days |Gullan and Cranston|(2014). In order to not violate the Markov assumption of the Bayes
filter, we define a separate state for each day within a developmental stage. Although we ex-
perimented with a finer time resolution of the temporal model (12-hour, 6-hour steps), we ob-
served no significant improvement. Additionally, because the developmental stages of larvae and
capped brood differ for female worker bees and male drones, we introduce two alternative paths
for those states, which can be distinguished from the observations based on their duration. We
do not model rare queen cells in the temporal model, as their appearance differs, and no swarm-
ing occurred during data collection. In total, the model consists of 43 states (see Table [2), as

visualized in Fig.[A.T7in[Appendix A.1]

Content Class \ Sex \ Number of States

other - 1
egg - 3
larva worker 5
drone 7
capped brood worker 13
drone 14

Table 2: Number of states of the temporal model per each defined content class. For the cell states egg, larva and capped
brood this corresponds to the duration of the developmental stage in days.

Transition Model. The transition model defines how individual cell states evolve over time. The
illustration of the temporal model is provided in Fig. [A.T7]in [Appendix A.I] As our work is
exploratory in the use of long-term cell state tracking, the amount of information in literature to
inform transition model design is limited. The transition probabilities may also vary depending
on the specific hive, current weather or food storage. Therefore, we set the probabilities based on
reasonable assumptions while acknowledging that the true probabilities may differ. Any unspec-
ified transition probabilities are computed as the complement to the specified ones. The final egg
state transitions to the first larva states, with a probability proportional to the worker-to-drone
ratio in the hive, which we set to a sensible value of 20:1. Similarly, the last larva states for both
worker bees and drones transition to their respective first capped brood states. Within each devel-
opmental stage, states are connected sequentially over time. Additionally, each state can revert
to other—due to the possibility of brood cannibalism—with probabilities p(egg can.) = 0.05,
p(larva can.) = 0.01 and p(capped brood can.) = 0.001. For the first egg state, this connection
is bidirectional to account for the possibility that with probability p(egg emergence) = 0.05, the
queen may lay an egg in an empty cell. When setting the probabilities of cannibalism for individ-
ual states, we need to address that the probability of the removal at a certain age is conditioned
on brood surviving to that age. We will now briefly describe the calculation of the probabilities
of brood cannibalism for each day of the class k development stage, where & is either egg, larva,
or capped brood. The probability p(k can.) for state of class k that forms N days long sequence
18




of states (ki)f\i , can be expressed as:
N
p(k can.) = Z P(k can. | k;)P(k;) 4)

i=1
N

= Z P(k can. | k;) ]_[ (1 - P(k can. | k;)),
i=1

Jj<i

i.e., the total probability of cannibalism for a given stage k is the sum of probabilities for each
day i given that the cannibalism did not occur before. We adopt a simplifying assumption that the
probability of brood cannibalism is the same for each day of the development stage (it is equally
likely on day 1 as day 2). Using this assumption, we further simplify the equation, which allows
us to numerically solve it and set the probabilities p(k can. | k4y) accordingly:

plkcan. |k)=c Vie{l,...,N} (5)
N

p(k can.) = Z c-(1=c) ",

i=1

Integrating Observations. The temporal model is designed for a one-day frequency of observa-
tions. However, the observations of the comb are not regular and usually do not come once a day,
as the comb scans are performed when the honeybee queen is inactive, and the individual cells
may not always be observable due to their occlusions by bees. To address that, if the elapsed
time between the observation and the last prediction step is less than one day, only the update
step (Eq.[3) is applied. Similarly, if the interval spans multiple days, the prediction step (Eq.
is performed multiple times before the update step. Before integrating the first observation of
a map cell, its state is initialized with a uniform probability distribution. When integrating the
observations, we add 5% uncertainty to the current state for numerical stability.

4.4.2. Sensor B: Open Brood Classification

In order for the temporal model to navigate through the possible states, we need to use so-
called sensors that provide observations about the state of the cells. These observations are
incorporated as new evidence to the probabilistic model, updating the belief about the cell state.
The first such sensor is an open brood classifier, which processes images of detected cells, re-
sizes them to 128 X 128 px, and classifies them into two categories other and joint “open brood”
(encompassing both egg and larva). For this binary image classification task, we use a convolu-
tional neural network (CNN) ResNet-9 trained on our custom dataset. Details on the annotation
process and the resulting dataset are provided in Section[5.4] while the construction of the sensor
model and its parameters is described in Section[5.5.1}

4.4.3. Sensor C: Capped Brood Classification

The temporal model inherently introduces a delay in state estimation, which may, for example,
result in predictions of the larva state even when the cell has been already capped. To address
this, we leverage images of cells that were not detected in the comb images—either due to oc-
clusion or because they were already capped. To get images of cells that were not detected, we
look at the positions where we expect them to be based on current information in the map. We
trained the ResNet-9 CNN for binary image classification, processing 128 x 128 px cell images
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b) False Candidate Events

Figure 8: Candidate egg-laying events are either confirmed or rejected by the neural network. In a) are examples of the
frames closest to the candidate timestamp for confirmed egg-laying events, together with the estimated cell position (in
green), and b) shows false candidate events.

and classifying them as either capped brood or a joint “otherwise” class (encompassing unde-
tected occluded open cells and capped honey cells). Details on the annotation process and used
dataset are provided in Section[5.4] while the sensor model is described in Section[5.5.2]

4.4.4. Sensor E: Honeybee Queen Egg-Laying Detection

Egg-Laying Detection. Honeybee eggs are typically not visible in cell images, so we instead
detect egg-laying events based on the queen’s movement pattern. We adopt a similar pipeline
as in our previous work [Ulrich et al| (2024)). First, we identify candidate egg-laying events by
identifying when the queen stops moving. Next, we extract 3-second video segments centred
on the candidate egg-laying timestamp. To classify these events, we train a convolutional neural
network (ResNet-9) on a manually annotated dataset. During training phase, in each epoch, we
randomly sample a single frame from all video segments in the training dataset. For inference,
we classify each frame of the video and compute the average prediction to determine the final
classification. Before passing the video frames to the neural network, we rotate the images in
a way that the queen always faces upwards. Examples of the frames closest to the candidate
timestamp both for egg-laying events and false candidate events are shown in Fig. [§]

Egg-laying Positioning. Beyond detecting egg-laying events, it is crucial to determine the exact
cell of the map in which the eggs were laid. Given the potential noise in the queen’s position and
orientation, we employ a voting-based approach to improve robustness. For each frame in the
3-second video segment, we accumulate votes based on the estimated position and orientation of
the queen on the comb. The cell with the highest number of votes is selected as the egg-laying
location, with confidence proportional to the vote count. This method assumes that the spatial
map is already well-initialized, but this is a reasonable assumption for the long-term deployment
of such a mapping system. The details about the dataset and construction of the egg-laying sensor
model are provided later in Section[5.5.3]
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c) Faster R-CNN (ResNet-50) Detections

Figure 9: Samples from the test part of the cell detection dataset. Fully visible cells are highlighted in green, while
partially occluded cells are in blue. a) shows the ground truth annotations, b) shows the detections provided by the
YOLOVS, and c) shows the detections provided by the Faster R-CNN with ResNet-50 backbone.

5. Experiments and Results

In this section, we present the evaluation of the individual components of the mapping pipeline.
First, we assess the performance of cell detection methods (Section @ Next, we evaluate the
quality of spatial registration in Section[5.2] We analyse the performance of the egg-laying detec-
tion model (Section[5.3)) and the cell image classification networks (Section [5.4). Subsequently,
we describe the construction of the sensor models for the temporal filter (Section [5.3). Finally,
in Section [5.6] we evaluate the cell state estimation and in Section [5.7} we demonstrate some
practical applications of our work.

5.1. Honeybee Cell Detection

For training and evaluation, we use an extended version of the cell detection dataset described
in our previous work Janota et al.| (2024). Both Faster R-CNN and YOLOvV5 models were pre-
trained on the COCO dataset [Lin et al.| (2014). The dataset comprises randomly selected images
across different comb and time, with annotated bounding boxes for each image. As mentioned
in[4:3.1] we distinguish between two cell categories: fully visible and partially occluded cells.

The dataset extension annotation followed the same semi-automated process as in
(2024). We first applied the Segment Anything Model (SAM) by [Kirillov et al.| (2023) with the
ViT-H model for instance segmentation, filtered the resulting masks based on area and circularity,
and manually reviewed and corrected the annotations. The final dataset contains 497 images with
resolutions 67 pm and 37 pm per pixel, split into training (363 images), validation (61 images)
and test (73 images) subsets. Fig.[9|shows sample images from the test set, together with the cell
detections from the best trained models.
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Method | AP[%] | AP-50 (%] | P[%] | R[%] | Fl-score [%]

CHT (Bilateral f., CLAHE) 9.4 134 11.2 89.9 19.9
YOLOV5s6 87.6 93.5 93.2 90.5 91.8
Faster R-CNN (ResNet-18) 81.1 92.5 87.2 89.9 88.5
Faster R-CNN (ResNet-50) 91.3 95.3 90.3 93.3 91.8

Table 3: Cell detection results for the class of fully visible open cells.

Method | AP[%] | AP-50 (%] | P[%] | R[%] | Fl-score [%]
CHT (Bilateral f., CLAHE) - - - - -
YOLOVS5s6 71.6 89.8 84.1 | 837 83.9
Faster R-CNN (ResNet-18) 58.8 82.9 80.4 76.9 78.6
Faster R-CNN (ResNet-50) | 75.2 88.9 82.1 | 86.2 84.1

Table 4: Cell detection results for the class of partially occluded open cells.

The models were evaluated on the test part of our dataset. We applied class-agnostic NMS
with an IoU threshold of 0.3 on the output of the object detectors (where applicable). Detections
from the CHT are considered to be of class fully visible cell.

For each class, we computed the Average Precision (AP) metric at an IoU threshold of 0.5,
as well as the average AP over IoU thresholds in the range [0.5,0.95] with a step size of 0.05.
Additionally, we report precision (P), recall (R) and F1-score at an IoU threshold of 0.5 and a
confidence threshold of 0.5. The results for the class fully visible cell are summarized in Table 3]
and for the partially occluded cell are presented in Table 4]

Although CHT achieved high recall, it generated many false positives, making it unsuitable
for images containing bees without additional filtering. The best performance was achieved by
the Faster R-CNN with a ResNet-50 backbone. YOLOVS achieved comparable results, as also il-
lustrated in Fig.[9] Faster R-CNN demonstrated higher recall but lower precision across both cell
classes, whereas YOLOVS showed lower recall but higher precision. Based on observations from
the test dataset, Faster R-CNN detects even poorly visible open cells. However, this sensitivity
also leads to more false positives, as it sometimes incorrectly identifies capped brood and honey
cells with distinct borders as open cells. In contrast, YOLOvS produces fewer false positives
but is more likely to miss partially visible cells and, somewhat more frequently than Faster R-
CNN, to misclassify fully visible cells as partially occluded. While YOLOVS5 performed slightly
worse, we selected it for our mapping pipeline instead of the Faster R-CNN due to its lightweight
architecture and higher computational efficiency.

5.2. Spatial Registration

The ground truth for the spatial map is practically infeasible to create, as it would require
annotating correspondences between all possible pairs of images in individual comb scans and
between adjacent comb scans. Instead, we employ two alternative performance indicators.

To evaluate the precision of odometry and spatial registration, we compute the distribution
of distances between the individual cell detection positions and their corresponding map cell
positions. Due to the spatial registration, the distances cannot be larger than half the size of the
cell, however, we can infer about the precision of the odometry from the tail of the distribution.
In an ideal scenario, the tail should be short and light, meaning most detections align closely with
their expected positions. However, in cases of poor odometry, the tail extends further, indicating

22



a) Side 0 b) Side 1

Figure 10: Visualization of all cell detections on both sides of the comb. The cell detections that were assigned to
the same cell cluster are highlighted with the same colors, showing that the matching of detection leads to a spatially
consistent map.

significant misalignments and larger deviations in the estimated positions. The distributions for
both sides of the hive are shown in Fig.[A.18]in[Appendix A.2] It can be seen that the majority
of the distances are concentrated well bellow the required threshold.

Secondly, we provide a qualitative performance indicator by visualizing all cell detections and
highlighting them with colors based on their corresponding map cell. The images of the entire
comb with visualized cell detections are shown in Fig.[I0] The well-defined cell clusters in the
images, again, suggest that the odometry and spatial registration are sufficiently precise for our
application.

After generating the initial map from the first 20 full comb scans, we have observed about 80%
of all the cells detected by the end of our dataset. The number of observed cells then increased
gradually. It should be noted that the final map did not cover certain areas of the comb with
capped honey (see Fig.[T4) because capped honey cells could only be added to the map if they
had been previously observed in their open stage.

5.3. Honeybee Queen Egg-laying Detection

As mentioned in Section f.44] the egg-laying detection component classifies 3-second video
segments in cases when the queen stops moving. These segments were annotated as either egg-
laying events or false candidate egg-laying events. For training and evaluation of the binary clas-
sification network, we manually annotated a total of 1075 candidate egg-laying events, which
were divided into training (698 video segments: 365 negative, 333 positive samples), valida-
tion (184 video segments: 92 negative, 92 positive samples), and test (193 video segments: 98
negative, 95 positive samples) subsets.

The performance of the ResNet-9 classification network is measured using standard classi-
fication metrics: precision, recall and Fl-score, calculated on the test dataset. The results are
presented in Table |5} the egg-laying detector achieved near-perfect results. However, it should
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be noted that the recall and precision of the egg-laying detection may be lower in the actually de-
ployment. This is because the honeybee queen may not be always observed—tracking failures or
comb scanning can lead to missed honeybee queen activity. Additionally, we observed instances
where an egg-laying event was correctly detected, but the queen most likely did not deposit any
egg in the cell.

5.4. Honeybee Cell Image Classification

We trained two distinct classifiers: one that classifies open cells into other and “open brood”
classes (see Section .4.7) and another that classifies undetected cells into capped brood and
joint “otherwise” classes (see Section[4.4.3)). For training and evaluation we manually annotated
randomly selected cell sequences from the spatial map.

Annotating open-cell images is challenging for human annotators, as the content of the open
cells is usually not clearly visible (see Fig.[7). However, capped brood cells are easily iden-
tifiable, and thus, serve as the starting point for our annotation process. To extract them from
the comb scans, we look where the map expects currently not detected cells—either open cells
occluded by bees or capped cells. As the first step, we manually annotated all capped brood
cells among those images. Using knowledge of the developmental stage durations, we then ret-
rospectively annotated open egg and larva cells, as each capped cell must have passed through
these stages. Figure [T1]illustrates the annotation process. If an egg-laying event was detected
prior to the capping, we annotated all cells from the time of egg-laying until capping. Other-
wise, we annotated cell observations starting eight days before capping and excluded those from
ten to nine days before capping, as it also might have been a drone whose open brood stage is
two days longer. In cases when it was not clear whether the state should be egg or larva, for
example, during the transition from one to another, we annotated it as a joint “any open brood”
class. Additionally, for detected egg-laying events that did not result in capping, we annotated
the following two days as egg and excluded from the dataset cell images observed on the third
day after egg-laying. All other open cell observations were annotated to be of class other.

In total, we annotated 531 cell image sequences, which were split into training (284 se-
quences), validation (79 sequences) and test (168 sequences) datasets. For the total number
of images in each considered class, see Tab.[A.T0|in[Appendix A.3] During the training of the
open brood classifier, we use the detected open cells in the sequences, on the other hand, for
training the capped brood classifier, we use the cells that were not detected but extracted from
the images at their expected positions. Due to class imbalance, particularly the high number of
other cells in the open cell classifier dataset, we downsampled this class and used only one-tenth
of these samples during training of the open brood classifier to mitigate overfitting. Similarly, for
the capped brood classifier, we reduced the number of non-capped brood samples to one-third
during training.

The models were evaluated on the test dataset using standard classification metrics: precision,
recall and F1-score. The results are presented in Table[5] The capped brood classifier performed
well, achieving an F1-score of 91.4%. In contrast, the open brood classifier showed lower per-
formance, with an F1-score of 77.4%. This result is expected, as the contents of open brood cells
are often difficult to distinguish, even for human observers (see Fig.[7).

5.5. Sensor Models for the Temporal Filter
To integrate observations into the temporal model, we must estimate the sensor model, defined
as the probability p(Z, | H,), see Section[4.4.1] In this section, we go through the settings of sen-
sor models for the open brood classifier (Section [5.5.1), capped brood classifier (Section
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Figure 11: Visualization of the annotation process of detected open cells: (a) when no egg-laying was detected before
capping, (b) when an egg-laying event occurred before capping, and (c) when an egg-laying event was observed but was
not followed by capping. Using the knowledge of developmental stage durations, we can infer annotations even when

the cell content is not clearly visible to human annotators.

Classifier | Precision [%] | Recall [%] | Fl-score [%]
Egg-laying 100.0 98.9 99.4
Open brood 71.3 77.6 77.4
Capped brood 91.1 91.8 91.4

Table 5: Classification metrics for each ResNet-9 binary classifier.

25



Observation Type | Egg | Larva | Capped Brood | Other

Open brood 0.848 | 0.848 (0.001) 0.257
Other 0.152 | 0.152 (0.001) 0.743
No observation 0) 0) (0.998) 0)

Table 6: Parameters of the open brood (B) sensor model. For classes with multiple states, the parameters are shared.

Observation Type | Egg | Larva | Capped Brood | Other
Capped brood ‘ 0.166 ‘ 0.166 ‘ 0.872 ‘ 0.166

Otherwise 0.834 | 0.834 0.127 0.834

Table 7: Parameters of the capped brood cell (C) sensor model. For classes with multiple states, the parameters are
shared.

and egg-laying detector (Section[5.5.3). While for some sensor model parameters, we were able
to get reasonable estimates using data—especially from classifier validation data—in some cases,
we had to resolve to expert judgment because necessary data was not available.

5.5.1. Sensor Model B: Open Brood Classification

For the parameters of the open brood classification sensor model p(Z; | H;), we use a properly
normalized confusion matrix calculated using the validation dataset, described in Section [E
The values are duplicated for egg and larva state as the sensor does not differentiate them, val-
ues for capped brood have been set experimentally. Based on temporal model evaluation on
validation data, we incorporated 20% of uniformly distributed noise into the confusion matrix.
An important part of the sensor model is then the introduction of a virtual observation “no ob-
servation”. Practically, open cell detection can only happen when the cell is open (either egg,
larva or other), not when the state is capped brood. The observation is virtual because it never
actually happens in the system, so it is never integrated, it simply allows to model that observing
an open cell is actually evidence of it not being closed. Technically this also results in proper
normalization. Thus, for the capped brood states, we set the probability of open cell observa-
tion p(Z; | H; = capped brood) = 0.001. The final sensor model parameters are summarized in
Table |6 with values estimated without data in brackets.

5.5.2. Sensor Model C: Capped Brood Classification

The capped brood sensor model p(Z; | H;) is computed following the approach outlined in
previous Section[5.5.1] Specifically, the capped brood classification model is evaluated on a val-
idation dataset (see Sec. @, and the normalized confusion matrix serves as the sensor model
once we duplicate states egg, larva and other that are aggregated on the classifier output. Addi-
tionally, based on the evaluation of the temporal model on validation data, we add 20% uniformly
distributed noise to the sensor model. The sensor model parameters are shown in Table|/} The
capped brood sensor is integrated only when one of the following holds: (1) the current state
estimate of the cell is larva, and the capped brood classification confidence exceeds 0.5, or (2)
the current state estimate is not capped brood and the capped brood classification confidence
exceeds 0.8.
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5.5.3. Sensor Model E: Egg-laying detection

The egg-laying sensor model should account for both the accuracy of candidate event classifi-
cation and the precision of associating the position of the queen with the correct cell in the map.
To derive the sensor model, we manually annotated 390 randomly selected candidate egg-laying
events, evaluating whether both the classification and positioning were correct. The sensor model
for egg state in day 1 is calculated using the results (212 candidates were correctly classified as
egg-laying events and positioned, 6 candidates were correctly classified as egg-laying events but
incorrectly positioned, 2 candidates were misclassified as non-egg-laying events, 170 candidate
events were correctly classified as non-egg-laying).

We know that a queen inserting her abdomen into a cell can only happen over an empty cell
(and we also assume that in such case, she always lays an egg). Now, using the above data, we
can compute the ratio

p(Z; = egg-laying, correct position | H; = egg)

. 6
p(Z; = egg-laying, incorrect position | H; = egg) ©

However, to get the probabilities, we also need to know how often observation “no egg-laying”
happens when the cell is in state egg,. That means knowing how often she shortly stops over cells
in state egg, relative to all other states. Unfortunately, we cannot determine from the images over
which type of cell it happened, so we have to make an assumption to calculate the parameters of
the sensor model.

We chose to assume the ratio |[no egg-laying A egg,l/[no egg-laying| to be about one fourth,
which is likely exaggerated but we experimentally validated the results are not sensitive to it.
This leads to the probabilities in Table [§] Notably, we do omit the performance of candidate
selection, which depends on factors such as potential missed observations due to scanning and
occasional failures in queen detection.

The probabilities of observing an egg-laying event for all other states are arbitrarily set to
0.001, reflecting that the physical egg-laying behaviour cannot happen over a closed or full cell,
so such an observation would only happen due to error. The egg-laying sensor is used only
for positive egg-laying events—with the confidence of the classification neural network greater
than 0.5—because if the candidate event is a false one, it does not provide any additional infor-
mation to the temporal model. The “no egg-laying” observation is, thus, similar to the case in
Section[5.5.1] a virtual observation, which is never integrated into the temporal model. Addition-
ally, when integrating the observations, we use position confidence to weigh the probabilities of
“egg-laying, correct position” and “egg-laying, incorrect position”. The parameters of the sen-
sor model can be seen in Table [8| with those which were not estimated from the data denoted in
brackets.

An important detail is the clock synchronization, we have to make sure that the day step of the
model corresponds to the development of the bee. When the egg-laying observation is integrated,
we reset the timestamp of the filter to synchronise subsequent filtering with the egg-laying event.
This is an engineering choice to deal with the fact that the other class does not follow any specific
temporal pattern in the daily rhythm of the model.

5.6. Honeybee Cell State Estimation

The egg-laying detector and image classification networks do not directly provide an estimate
of the cell state. To address this, we employ a Bayes filter that integrates observations from these
components to estimate the cell state over time. In this section, we first conduct an ablation
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Observation Type | EggDay1 | Other Classes

Egg-laying, correct position 0.808 (0.001)
Egg-laying, incorrect position 0.023 (0.001)
No egg-laying 0.169 (0.998)

Table 8: Parameters of the egg-laying (E) sensor model.

study to demonstrate the importance of utilizing all the proposed egg-laying detection and image
classification modules. Next, we present per-class classification metrics to evaluate the perfor-
mance of the temporal model. We then showcase the temporal model’s ability to detect capping
events and its capability to predict capping events several days in advance in the absence of new
observations. For all evaluations in this section, we use the dataset described in Section [5.4}

5.6.1. Ablation Study of Sensors for the Temporal Model

We present an ablation study evaluating the contribution of different sensors in the temporal
model (see Fig. [I2). The results demonstrate that each sensor plays a crucial role in achieving
accurate cell state estimation. The egg-laying sensor significantly enhances the classification of
the egg state, which as can be seen, the open cell image classification network alone struggles
with, as eggs are often not visible in images. When combined, the egg-laying and open brood
classification sensors already yield satisfactory performance for most classes. However, due to
natural variations in brood development, distinct development durations for worker bees and
drones, and the delayed nature of the temporal model, some capped brood cells may initially be
misclassified as larva. Incorporating the capped brood visual sensor further refines the classifica-
tion and improves the detection of the capping events early. We also statistically compare ECB to
the second-best EB using a permutation test on the reported per-class F1-scores, where randomi-
sation of labels is used to simulate the null hypothesis of equal performance. EBC significantly
outperformed EB for other (A Fl-score = 0.026, p < 0.001, n = 8963), larva (A Fl-score =
0.341, p < 0.001, n = 599), and brood (A Fl-score = 0.128, p < 0.001, n = 6039), while the
improvement for egg (A Fl-score = 0.024, p = 0.194, n = 192) was not statistically significant
due to small sample size. Therefore, we employ the temporal model with all three sensors in the
subsequent experiments.

5.6.2. Classification Metrics

Since the temporal model provides a comprehensive estimate of the cell state, we evaluate its
performance across all considered cell classes: egg, larva, capped brood, and other. For each
annotated cell sequence, we initialize the state with a uniform distribution and iteratively update
it based on observations. If an observation is annotated, we compare it against the estimated
state. To assess performance, we compute standard classification metrics—precision, recall, and
F1-score—separately for each class.

The results, summarized in Table 0] indicate that the temporal model achieves near-perfect
classification for the other and capped brood classes. The classification of larva cells is also
highly reliable, though slightly worse. The most challenging class to classify is egg. This is
likely due to two main factors: (1) eggs are often not clearly visible in images, making detection
inherently difficult, and (2) during observed egg-laying events, the honeybee queen may not
always deposit an egg in the cell. Overall, these results demonstrate the effectiveness of the
temporal model in integrating multiple sensor observations to achieve cell state estimation across
all the developmental stages of the honeybees, even when the state is not directly observable.
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Figure 12: Results of the ablation study comparing the overall system performance using different sensor combinations
(E—egg-laying sensor, B—open brood sensor, EB— a combination of E and B, EBC— a combination of E, B and sensor
of capped brood). Per each class, we show Fl-scores of the filtered classifications. Since each sensor contributes to the
classification of a certain class we see that the combination of all EBC (red) performs the best overall.

Class | Precision [%] | Recall [%] | Fl-score [%]
Other 98.5 98.5 98.5
Egg 72,9 68.8 70.8
Larva 77.7 86.8 82.0
Capped brood 100.0 99.1 99.5

Table 9: Filtered classification performance on the test dataset using all sensors.
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5.6.3. Delay of Temporal Filter on Capping Events

Beyond standard classification metrics, we are also interested in the inherent delay that is in-
duced by the temporal filter. Because the capping of brood cells constitutes a natural breaking
point, which we can easily and reliably annotate, we chose to test how precisely in time the tem-
poral model correctly identifies the capping events. Since observations occur at irregular time
intervals, we generate a sequence of state estimates with a fixed one-day time step. To achieve
this, we start with the first available observation for each individual cell and sequentially inte-
grate subsequent observations using the temporal model, continuously refining the state estimate.
Rather than storing estimates at every update, we only save state estimates at fixed one-day in-
tervals. Whenever the next scheduled one-day time step is reached, we take the current state
estimate, perform a prediction step using the temporal model, save the predicted state, and pro-
ceed with integrating the following observations. This ensures that the final sequence of saved
state estimates maintains a uniform one-day step while incorporating all available observations.

For evaluation, we compare the estimated state sequences to the ground truth observations
of capped brood. The ground truth timestamps indicate the first detected occurrence of capped
brood, though they may not precisely correspond to the actual capping event due to irregularity
of observations. We then measure the time difference between the first estimated occurrence of
capped brood in our generated sequence and the first observed occurrence in the ground truth
sequence. A capping event is considered detected if this time difference is no more than three
days.

In the test part of the dataset, the temporal filter correctly estimated 96.8 % of capping events
(61 out of 63), with a mean time difference and standard deviation of (0.14 + 0.78) days. This
slight lag is expected, as any temporal filter is delayed in nature. Nevertheless, the discrepancy
remains below the one-day discretization step, demonstrating the temporal model’s reliability in
accurate detection of capping brood events with minimal temporal offset.

5.6.4. Forecasting Capping Events

In an ideal scenario, the temporal model would be used to predict the future development of all
comb cell states. However, achieving reliable predictions requires careful tuning of the model’s
parameters. The classification of egg and larva cells is particularly challenging (see Section[5.6),
and accurately forecasting their future states is even more difficult. This is primarily due to
variability in the egg-laying rate, which depends on the colony’s current condition, making it
difficult to predict the number of egg and larva cells with high confidence.

However, capped brood cells can be classified with high accuracy (see Section[5.6) and given
the estimated brood cannibalism rate and the current observed number of egg and larva cells, it
should possible to predict future capping events. In this section, we conduct an experiment to
assess how many days into the future the temporal filter can accurately forecast capping events.
This is complementary to experiments with the detection time accuracy of Section[5.6.3]as now
we ask how long into the future capping can be accurately predicted, given that detecting it is
actually equivalent to predicting it O days into the future.

For evaluation, we use the test dataset described in Section @] and generate state estimates at
uniform one-day intervals, as outlined in previous Section To make predictions into the
future, we incorporate an estimated brood cannibalism rate (see Section|5.7.1)) into the temporal
model by adjusting the probability of cannibalism for egg states and the first three days of the
larva state.

For each ground-truth sequence of cell observations, we identify subsequences with capped
brood and assess the predictive performance of the temporal filter. We simulate future state
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Figure 13: The performance of the system on the task of capping-time prediction given a number of days ahead up to day
0 which corresponds to the simple filtered state estimation. The blue barplot shows the proportion of capping events that
were correctly predicted. As expected, the hit ratios grow as the capping event is approaching, up to 96.8 % of filtered
classification hit rate in day 0. The boxplot shows the associated error in the predicted time of the capping event with
with median (solid red) and mean (dashed red) values.

predictions without any additional observations at several points before the capping event starting
nine days prior. Note that because the sequence of observations before the capping event might
not be long enough, we need to normalize our metrics only over the set of those that are, e.g., an
event on the third day cannot be predicted nine days prior. Prediction accuracy is measured using
a hit ratio, defined as the proportion of capped brood sequences that were predicted that far into
the future. A capping event is considered successfully predicted if the estimated time falls within
+ three days of the actual ground-truth event, to account both for the difference in duration of
worker and drone developmental stages and a possible time error of the temporal filter.

Figure [[3] presents the hit ratios alongside the associated error in the predicted capping times.
The results show that our system is able to predict capping events well into the future. Notably,
six days before the capping event, the model successfully predicts almost 70% of capped brood
sequences. To ensure consistency in error evaluation, we round the capping time errors towards
zero, meaning that predictions made on the same day—even with some small delay—are con-
sidered to have no error. Until one day before capping, the temporal model generally predicts
the event on average a day too early. However, from that point onward, the inner time clock of
the temporal filter aligns with the actual time more closely. Overall, the results demonstrate that
the temporal model maintains meaningful state representations, allowing for capping prediction
without direct observations.

5.7. Application

The above experiments demonstrate the reliability of spatial mapping combined with the tem-
poral filter for classifying and predicting cell states in individual cell sequences. The resulting
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Figure 14: The final comb map, as of September 9th, 2024, visualised over the latest scan for both sides of the honeybee
comb. Each cell is highlighted in a color representing the class with the highest belief—other (red), egg (blue), larva
(purple), and capped brood (green).

map is shown in Fig.[T4] However, the primary value of this map lies in its broader application
as a tool for studying honeybee colonies and their overall well-being. In this section, we present
two example applications—real-time quantification of brood cannibalism and estimation of the
colony state through comb monitoring. The system enables us to estimate the occurrence of
egg cannibalism—a phenomenon that reflects colony fitness and the amount of food storage—
thanks to the detection of egg-laying events and individual cell monitoring over time (Sec. [5.7.1).
We can estimate the state of the colony using the counts of individual cell types leveraging the
semantic map as a whole (Sec. [5.7.2).

That is, of course, not an exhaustive list. Beyond individual cell tracking, the spatial map also
provides insights into the structural dynamics of the comb. For example, analyzing the compact-
ness of the broodnest can help to assess the queen’s egg-laying pattern and overall productivity.
Irregular or scattered brood patches may indicate queen failure or inadequate mating, both of
which are critical factors in long-term colony stability [Tarpy et al| (2013)); [Walsh and Rangel
(2016). By detecting deviations in brood patterns early, beekeepers can respond promptly—
either by replacing a failing queen or adjusting management practices—reducing the likelihood
of cascading problems that might otherwise threaten colony survival. Additionally, it could help
analyze the formation of broodnest patterns, which have been previously reported to occur in
honeybee colonies (1991), facilitating early detection of brood diseases
(2010) or parasitic infestations Dietemann et al.|(2013)), revealing how colonies allocate resources
over time and offering insights into self-organizing processes that shape the broodnest|Camazine|
ket al.| (1990); [Johnson| (2008); Montovan et al.| (2013)). Studying the structural dynamics is be-
yond the scope of this work. We invite our readers to come up with other exciting applications
of our work.
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Figure 15: Visualisation of a) intervals of interest for egg-laying classification in egg cannibalism estimation and b)
classification of egg-laying events. When a single egg-laying event occurs, it is classified based on the intervals of
interest. In cases of multiple egg-laying events, the event with the closest capping time to the typical value is identified,
while preceding egg-layings are classified as cannibalized and subsequent ones as false positives.

5.7.1. Estimating Egg Cannibalism

Brood cannibalism in honeybee colonies is a response to environmental stressors, particularly
food shortages|Schmickl and Crailsheim| (2001} 2004). When resources are limited, worker bees
consume younger brood to reallocate nutrients toward older larvae, in which they have already
invested more resources Brodschneider and Crailsheim|(2010). By assessing the egg cannibalism
rate, we could identify resource shortages or colony stress that could lead to the potential collapse
of the colony.

Since our system detects egg-laying events, we can estimate the rate of egg cannibalism using
the final comb map. For each confirmed egg-laying event, we search for the nearest capped brood
sequence in the future. If the egg-laying event is not interrupted by another egg-laying before
capping and the time interval between the event and capping is greater than 6.5 days and less
than 13 days (accounting for potential time error in the temporal model), we consider the egg to
have successfully developed. If the time interval between the egg-laying event and the end of
the dataset is less than 13 days, egg-laying is not considered in the metrics. Figure [I3] gives a
diagram of the process with intervals of interest and a schematic visualisation of the classification
of egg-laying events.

In cases where multiple egg-laying events precede a single capped brood sequence, we first
determine the sex of the brood based on the duration of the capped state. Then, we analyze
the time intervals between the egg-laying events and capping to identify the egg-laying event
most likely responsible for the capped brood. This egg-laying event is counted as successfully
developed. Any egg-laying events that occurred after the identified successful one are omitted,
we consider them to be either false positive detections or cases where the queen did not actually
deposit an egg in the cell. Conversely, egg-laying events that occurred before the successful one
are classified as cannibalized, as they did not lead to brood development despite being detected.

The overall brood cannibalism rate computed by our method over the span of our dataset was
31.4%. Out of 2136 detected egg-laying events, 1466 eggs successfully developed into a capped
brood, with a mean and standard deviation of the time between egg-laying and capping being
(8.3 + 1.0) days. This time includes the inherent delay of both the temporal filter and irregular
observations. In 75 cases, the detected egg-laying event was either a false positive or a case where
the queen did not actually deposit an egg in the cell. Among the 670 cannibalized eggs, 427 were
not followed by any capping event, while 207 were cannibalized but later replaced by a new egg-
laying event that successfully led to a capped brood. Additionally, 36 cannibalized eggs were
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capped later than expected, with a mean time and standard deviation of (14.6 + 1.3) days, with
no other egg-laying detected between, indicating that the actual egg-laying event responsible for
the capping may not have been detected due to tracking failures or missed observations.

This relatively high cannibalism rate could be influenced by seasonal factors, as the dataset was
collected toward the end of the season when honeybees begin to prepare for winter. Additionally,
some detections may correspond to instances in which the queen exhibited egg-laying behaviour
without actually depositing an egg in the cell, contributing to the estimated rate. Notably, the
honeybee colony remained alive at the time of submitting this article—March 2025, approxi-
mately six months after data collection—suggesting that the colony was healthy but rather under
resource stress.

5.7.2. Honeycomb State Development

Monitoring the development of a honeybee colony is essential to understand its overall health,
reproductive success, and long-term well-being. Potentially, it could even serve as an early
warning sign of a threatening colony loss. In this section, we demonstrate the tracking of the
brood stages in the hive over time.

Earlier, we have demonstrated the classification performance of the temporal filter (see Sec-
tion[5.6). By integrating observations over time, the temporal filter enables us to track the de-
velopment of the entire comb. For each individual cell ¢, ; at any time ¢, the filter provides a
belief distribution p(H,; | z1.4-1) over possible cell states. To show the results at a reasonable
granularity, we estimate totals per each defined class, disregarding multiple days per class.

We estimate the total number of cells after integrating observations from each scan of the
comb. For each cell ¢, j, we first sum the probabilities in a way to obtain probabilities P(H,; =
k | z1.4-1) where class k is one of other, egg, larva or capped brood. Now, to get an estimate of
the total number of cells per class k, we use the fact that the cells are estimated independently.
We consider for each cell ¢, ; a binary random variable K, ; ~ Bernouli(p, ;), where K, ; = 1 iff
the cell belongs to class k, then trivially p, ; = P(H;; = k | z1.,~1). The total expected number of
cells for each class at time ¢ is then

Ny N;
ELY Kil= ) ElK]= > p. @)
i i=1 i=1

and the associated standard deviation to account for the uncertainty of the estimate is similarly

N, N,
JVarl Y Kl = | 3 Vartkia = | 3 p(1 = ). (8)
i i=1 i=1

For cells that have not yet been observed, we consider their distribution to be uniform over
the aggregated classes k to make the estimates comparable over time. It should be noted that
for this normalization, we use the total number of cells in the last timestamp of the dataset, so
the calculation cannot be done in real-time. However, for the long-term deployment of such a
mapping system, it is a reasonable assumption that we would let the system build the map until
we get sufficient coverage of the entire comb.

Figure[I6]illustrates the development of the comb state on both sides of the comb. The period
for sides 0 and 1 differs due to the varying scanning frequencies; consequently, the initial map
takes longer to build. The figure shows both the estimated totals and their respective variance;
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Figure 16: Example application of our system to long-term continuous monitoring of the comb. Starting after the initial
map was created, we show the development of the estimated total number of cells for each content class. The estimates
are done directly from cell state beliefs with no further filtering. Because only cells that were seen open are included
in the map, it takes time before the number of capped brood cells is properly stabilised. Note that the y-axis is in a
logarithmic scale (base 10).

however, since the total number of cells is in the order of thousands, the variance of expectation
is very small (in order of tens) so it is hard to see. The number of egg cells exhibits more
fluctuations compared to larva and capped brood cells, which could be attributed to the high
cannibalism rate and lower classification accuracy for egg cells. In the first few days, we observe
a gradual increase in the number of capped brood cells, which then stabilizes. This is caused by
the fact that we can only track capped brood cells when they were previously detected in their
open stage. Cells we did not see are assumed to be uniform, so they contribute to counts of all
classes. Nevertheless, the transition from larva cells to capped brood cells is clearly visible,
reflecting the expected developmental progression.

6. Limitations

Despite the promising results of our comb semantic mapping method, several limitations of
our study must be acknowledged. Our experimental setup was limited to a single observation
hive containing only two combs, which was located indoors with a connection to an outdoor
environment via a plastic tube. Although such settings are common in biological research and
sufficient for validation, they naturally limit the colony size and may influence its behavioural dy-
namics. The 25-day duration of our experiment also limited the ability to assess the performance
of the brood development model over multiple subsequent brood cycles.

The data collection was non-invasive, meaning that the monitoring was performed under near-
infrared light and without any manipulation of the comb frames. However, on 21 August 2024,
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the honeybee queen had to be re-tagged, and the colony received a treatment against Varroa
mite. We attempted to minimize any disturbance to the colony, but it should be noted that such
operations could have introduced minor artifacts or deviations in colony behavior.

The AROBA system was specifically developed for long-term observation and interaction with
a honeybee queen in a laboratory-controlled environment, primarily for biological research. As
such, the used mechatronic solution—due to its size, complexity, and reliance on a non-standard
observation hive with a limited-size colony—is not suitable for practical deployment in standard
hives and would be economically impractical for traditional beekeeping at scale.

Nevertheless, we believe that our mapping system provides valuable data for biological and
ecological research, where long-term data of the comb dynamics is usually difficult to collect.
We envision our system in its current state as a research instrument rather than a field-deployable
solution.

7. Future Work

In the future, we plan to design a more robust way of comb scan registration that would not
require precise odometry information from the robot. As we observe the colony in its natural en-
vironment under near-infrared light, it may also be beneficial to explore computer vision methods
for enhancing image clarity through colorization, such as|Shalini et al.|(2024), as well as consid-
ering alternative object detection approaches|Vasantha et al.|(2023)). A big hurdle is also setting
the parameters for the temporal model, which further may be dependent on the specific colony,
weather conditions, time of the season, and others; we would like to be able to learn the param-
eters from the data . An important property of honeybee hives is their spatial organisation. As
we assume that the cells are developing independently, modelling spatial dependencies directly
could be another extension of our method . One of the important factors influencing the state of
the comb is the behavior of the honeybee queen. In[Blaha et al.[(2025)) , we show that the queen
movement does not correspond to any simple random walk models; therefore, beyond modelling
spatial dependencies between individual cells, future work could also incorporate other queen
behavioral data, such as her trajectory or resting locations, in the semantic map. While improv-
ing the technical level of our method, we hope to reach more novel applications. We see great
potential in the study of the honeybee behavior, both under natural conditions and under stress-
ful interventions, such as nutritional deprivation, presence of agricultural chemicals or brood
diseases.

8. Conclusion

Monitoring the health and state of honeybee colonies is crucial for detecting early signs of
colony stress. One option for such monitoring is continual observation of the comb, which
contains information about the colony development, food storage, etc. Most existing methods,
unfortunately, require manual intervention by experienced beekeepers, which is not scalable to
allow for more than one-time observations and also disrupts the colony. In this work, we pre-
sented a proof-of-concept for a non-invasive continuous mapping of comb brood cells using
robotic observations from within an indoor-located observation hive.

We successfully managed to build and automatically update a semantic map of the comb de-
spite heavy occlusions caused by honeybees and demonstrated two potential applications of our
work. The first is a continuous colony health assessment by measuring the brood cannibalism
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rate. To our knowledge, it is the first system with such automatic capability. And the second
is the monitoring of the comb development and overall state estimation in real time. While the
current robotic platform is not yet applicable to practical beekeeping, we aim to design a system
deployable with standard hives in the future.

8.1. Contributions
8.2. Future Work
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Appendix A.

Appendix A.1. Full Transition Model Diagram
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Figure A.17: A graph visualization of the considered cell states and the transition model describing the development
of brood. Individual nodes correspond to the possible states of the cells—egg (blue), worker/drone larva (orange),
worker/drone capped brood (red) and other (green). To achieve the Markovian property, the differences in length of
individual stages—also in connection to the sex of the brood—are represented by internal hidden states per each day
(based on literature review).
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Appendix A.2. System Odometry Quality
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Figure A.18: Distributions of detection-to-cluster distances for both sides of the comb, which we use to check the
odometry error for each robot. The mass of both distributions is concentrated well below half the size of a cell, which
means that detections of the same cell should be reliably matched together.

Appendix A.3. Cell Image Dataset

Class | Training | Validation | Test

Other 13954 3534 8963
Egg 263 90 192
Larva 757 291 599
Capped brood 7488 3166 6368
Any open brood 304 123 281
Occluded/capped honey 62744 17652 39067

Table A.10: Number of annotated cell images in each class for training, validation, and test sets. Classes corresponding
to states are shown in italics.
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